New study shows that stroke byproduct acrolein activates the precursor of heparanase, an enzyme that degrades the glycocalyx in the blood-brain barrier
The blood–brain barrier prevents immune cells from circulating freely in the brain, and the breakdown of its function is a major cause of post-stroke inflammation. Now, for the first time, researchers have identified how a toxic stroke byproduct, acrolein, could activate the barrier-degrading enzyme proheparanase (proHPSE). The research group has discovered that proHPSE degrades the glycocalyx within the post-stroke brain’s blood vessels, providing hope for new and effective therapeutics against post-stroke inflammation.
Strokes are a leading cause of…
Scientists develop new biosensing device to chemically monitor the state of muscles during physical exercise
Lactate, a compound present in sweat, is an important biomarker to quantify during exercise. However, available wearable sensors can cause skin irritation, which calls for the use of different materials. In a recent study, scientists at Tokyo University of Science have developed a soft and nonirritating microfluidic sensor for the real-time measurement of lactate concentration in sweat. This wearable device will help monitor the state of the body during intense physical exercise or work.
With the seemingly unstoppable advancement in the fields of miniaturization and…
How “elicitors” can initiate defense responses in plants against herbivores, and can potentially lead to development of pesticide-free agriculture
Plants are known to possess solid immune response mechanisms. One such response is “sensing” attack by herbivorous animals. In a new review article, Prof. Arimura from Tokyo University of Science, Japan, discusses “elicitors” — the molecules that initiate plant defense mechanisms against herbivore attack. He highlights the major types of elicitors and the underlying cellular signaling, and states that this could spur research on organic farming practices that could prevent the use of harmful pesticides.
Nature has its way of maintaining…
Scientists reveal peculiar surface structure in materials resembling quasicrystals with interesting implications for its magnetic properties
Ever since their discovery, quasicrystals have garnered much attention due to their strange structure. Today, they remain far from being well-understood. In a new study, scientists reveal, for the first time, a unique shifting surface atomic structure in a material emulating quasicrystals, opening doors to the better understanding of magnetic and superconducting properties of quasicrystals, and potential applications in semiconductor film growth.
Between chemistry classes, gemstones, and electronics, the idea of crystals, substances with an ordered and periodic arrangement of atoms is quite common…
Near-infrared hyperspectral imaging combined with machine learning can visualize tumors in deep tissue and covered by a mucosal layer, scientists show
Gastrointestinal stromal tumors are tumors of the digestive tract that grow underneath the mucus layer covering our organs. Because they are deep inside the tissue, these “submucosal tumors” are difficult to detect and diagnose, even with a biopsy. Now, researchers from Japan have developed a novel minimally invasive and accurate method using infrared imaging and machine learning to distinguish between normal tissue and tumor areas. This technique has a strong potential for widespread clinical use.
Tumors can be damaging…
Scientists in Japan reveal how optimizing the structure of porphyrin derivatives can help improve drug delivery to cancer cells
Porphyrins are interesting drug delivery vehicles that can specifically accumulate in cancer cells. However, how the structure of the drug-conjugated porphyrin affects its ability to penetrate and accumulate within cancer cells is not well understood. Researchers from Tokyo University of Science now investigate the correlation between the structure and tumor accumulation of porphyrin derivatives. Their findings can help to optimize drug delivery, possibly advancing cancer treatment.
The main culprit in cancer is healthy cells that have gone rogue and acquire the…
Scientists modified “mesenchymal stem cells” to carry anti-cancer drugs and deliver them to target cancers
Targeting drugs to cancer tissues is a major challenge in cancer treatment. Mesenchymal stem cells (MSCs) are known for their ability to find and target tumor cells in the body, but using MSCs for drug delivery has been tricky, because upon loading with drugs, MSCs lose their viability and migratory ability. Now, researchers from Tokyo University of Science have successfully modified MSCs to deliver large quantities of anti-cancer drugs in a targeted manner to developing cancer cells.
As humans evolve, cancer also evolves in…
Researchers at Tokyo University of Science devise a new electrochemical technology to manufacture ammonia-based fertilizer from urea
From the perspective of future societies, in extremely closed environments such as a space station, self-sufficiency in food cultivation and waste management is critical. However, the technology to achieve this is still lacking. In a new study, scientists from Japan shed light on their most recent breakthrough: a cheap and efficient method to make liquid fertilizer (ammonia) from simplified artificial urine, serving an ideal dual purpose of growing food and treating waste.
In extreme environments, even the most ordinary tasks can seem like…
New sodium-storing electrode material for rechargeable batteries with unprecedented energy density
Today, most rechargeable batteries are lithium-ion batteries, which are made from relatively scarce elements — this calls for the development of batteries using alternative materials. In a new study, scientists from Tokyo University of Science, Japan, find an energy-efficient method to fabricate a hard carbon electrode with enormously high sodium storage capacity. This could pave the way for next-generation sodium-ion batteries made with inexpensive and abundant materials, and having a higher energy density than lithium-ion batteries.
Cost-effective rechargeable batteries are at the heart of virtually all portable electronic devices…
Scientists investigate oxidative reactions in ytterbium silicide, a heat-resistant coating, to improve heat efficiency in aircraft gas turbine engines
Ytterbium silicide (Yb–Si) is a promising coating material for the high-temperature sections of aircraft gas turbine engines. Although Yb–Si is heat-resistant and prevents formation of structurally harmful SiO2 in the coating, its oxidation mechanisms are unclear. In a recent study, scientists from Japan demonstrate how the Yb to Si ratio in the material, and the surrounding atmosphere, affect the oxidation processes in Yb–Si, opening doors to more energy efficient gas turbines.
Certain sections of aero gas-turbine engines, which are widely used…
Tokyo University of Science (TUS) is one of the most well-known, respected, and the largest science-specialized private research universities in Japan.